Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.727
Filter
1.
Netw Neurosci ; 8(1): 138-157, 2024.
Article in English | MEDLINE | ID: mdl-38562298

ABSTRACT

Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.

2.
Anat Histol Embryol ; 53(3): e13034, 2024 May.
Article in English | MEDLINE | ID: mdl-38563613

ABSTRACT

The ultrastructure of the olfactory system of most fossorial rodents remains largely unexplored. This study sought to investigate the functional structure of the olfactory mucosa and olfactory bulb of two species of fossorial rodents that have distinct behaviour and ecology, the East African root rat (RR) and the naked mole rat (NMR). Transmission electron microscopy and scanning electron microscopy were employed. The basic ultrastructural design of the olfactory system of the two species was largely comparable. In both species, the olfactory mucosa comprised an olfactory epithelium and an underlying lamina propria. The olfactory epithelium revealed olfactory knobs, cilia and microvilli apically and sustentancular cells, olfactory receptor neurons and basal cells in the upper, middle and basal zones, respectively. The lamina propria was constituted by Bowman's glands, olfactory nerve bundles and vasculature supported by loose connective tissue. Within the olfactory bulb, intracellular and extracellular structures including cell organelles, axons and dendrites were elucidated. Notable species differences were observed in the basal zone of the olfactory epithelium and on the luminal surface of the olfactory mucosa. The basal zone of the olfactory epithelium of the RR consisted of a single layer of flattened electron-dense horizontal basal cells while the NMR had juxtaposed electron-dense and electron-lucent heterogenous cells, an occurrence seen as being indicative of quiescent and highly proliferative states of the olfactory epithelia in the two species, respectively. The olfactory epithelial surface of the NMR comprised an elaborate cilia network that intertwined extensively forming loop-like structures whereas in the RR, the surface was rugged and consisted of finger-like processes and irregular masses. With gross and histological studies showing significant differences in the olfactory structures of the two species, these findings are a further manifestation that the olfactory system of the RR and the NMR have evolved differently to reflect their varied olfactory functional needs.


Subject(s)
East African People , Olfactory Receptor Neurons , Animals , Humans , Mole Rats , Axons , Cilia
3.
Sci China Life Sci ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38558376

ABSTRACT

The significance of ecological non-monotonicity (a function whose first derivative changes signs) in shaping the structure and functions of the ecosystem has recently been recognized, but such studies involving high-order interactions are rare. Here, we have proposed a three-trophic conceptual diagram on interactions among trees, rodents, and insects in mast and non-mast years and tested the hypothesis that oak (Quercus wutaishanica) masting could result in increased mutualism and less predation in an oak-weevil-rodent system in a warm temperate forest of China. Our 14-year dataset revealed that mast years coincided with a relatively low rodent abundance but a high weevil abundance. Masting not only benefited seedling recruitment of oaks through increased dispersal by rodents but also a decrease in predation by rodents and weevils, as well as an increase in the overwintering survival of rodents. Masting appeared to have increased weevil survival by reducing predation of infested acorns by rodents. These results suggest that masting benefits all participants in the plant-insect-rodent system by increasing mutualism and reducing predation behavior (i.e., a non-monotonic function). Our study highlights the significance of masting in maintaining the diversity and function of the forest ecosystem by facilitating the transformation from predation to mutualism among trophic species.

4.
Article in English | MEDLINE | ID: mdl-38601994

ABSTRACT

While existing literature supports associations between cerebrovascular dysfunction and the emergence of depression and depressive symptoms, relatively little is known about underlying mechanistic pathways that may explain potential relationships. As such, an integrated understanding of these relationships in pre-clinical models could provide insight into the nature of the relationship, basic mechanistic linkages and areas in which additional investment should be targeted. This scoping review was conducted in MEDLINE, EMBASE and Scopus to outline the relationship between depressive symptoms and cerebrovascular dysfunction in pre-clinical animal models with additional focus on the areas above. From 3438 articles initially identified, 15 studies met the inclusion criteria and were included in the review. All studies reported a positive association between the severity of markers for cerebrovascular dysfunction and that for depressive symptoms in rodent models and this spanned all models for either pathology. Specific mechanistic links between the two such as chronic inflammation, elevated vascular oxidant stress, and altered serotonergic signaling were highlighted. Notably, almost all studies addressed outcomes in male animals, with a near complete lack of data from females, and there was little consistency in terms of how cerebrovascular dysfunction was assessed. Across nearly all studies was a lack of clarity for any "cause and effect" relationship between depressive symptoms and cerebrovascular dysfunction. At this time, it is reasonable to conclude that a correlative relationship clearly exists between the two and future investigation will be required to parse out more specific aspects to this relationship.

5.
J Stroke Cerebrovasc Dis ; : 107728, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643942

ABSTRACT

OBJECTIVES: Subarachnoid haemorrhage (SAH) carries a high burden of morbidity and mortality. One in three patients develop vasospasm, which is associated with Delayed Cerebral Ischemia. The pathophysiology includes vasoconstrictor receptor upregulation in cerebral arteries. The protein kinase C - inhibitor RO-31-7549 reduces the expression of several vasoconstrictor receptors and normalizes cerebral blood flow in experimental SAH but functional and behavioural effects are unknown. This study was undertaken to analyse functional outcomes up to 14 days after experimental SAH. MATERIALS AND METHODS: 54 male rats were randomised to experimental SAH or sham, using the pre-chiasmatic, single injection model, and subsequent treatment or vehicle. 42 remained for final analysis. The animals were euthanized on day 14 or when reaching a humane endpoint. The primary endpoint was overall survival, defined as either spontaneous mortality or when reaching a predefined humane endpoint. The secondary outcomes were differences in the rotating pole test, weight, open field test, novel object recognition and qPCR of selected inflammatory markers. RESULTS: In the vehicle group 6/15 rats reached the humane endpoint of >20% weight loss compared to 1/14 in the treatment group. This resulted in a significant reduced risk of early euthanasia due to >20% weight loss of HR 0.15 (0.03-0.66, p = 0.04). Furthermore, the treatment group did significantly better on the rotating pole test, RR 0.64 (0.47-0.91, p = 0.02). CONCLUSION: RO-31-7549 improved outcomes in terms >20% weight loss and rotating pole performance after experimental SAH and could be investigated.

6.
Expert Opin Ther Targets ; : 1-14, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38622072

ABSTRACT

BACKGROUND: Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS: In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS: Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS: GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.

7.
Placenta ; 150: 22-30, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38581971

ABSTRACT

INTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.

8.
BMC Microbiol ; 24(1): 115, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575867

ABSTRACT

Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic hosts.We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future outbreaks.


Subject(s)
Arenaviridae , Arenaviruses, New World , Animals , Humans , Arenaviridae/genetics , South America
9.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612647

ABSTRACT

Impaired healing wounds do not proceed through the normal healing processes in a timely and orderly manner, and while they do eventually heal, their healing is not optimal. Chronic wounds, on the other hand, remain unhealed for weeks or months. In the US alone, chronic wounds impact ~8.5 million people and cost ~USD 28-90 billion per year, not accounting for the psychological and physical pain and emotional suffering that patients endure. These numbers are only expected to rise in the future as the elderly populations and the incidence of comorbidities such as diabetes, hypertension, and obesity increase. Over the last few decades, scientists have used a variety of approaches to treat chronic wounds, but unfortunately, to date, there is no effective treatment. Indeed, while there are thousands of drugs to combat cancer, there is only one single drug approved for the treatment of chronic wounds. This is in part because wound healing is a very complex process involving many phases that must occur sequentially and in a timely manner. Furthermore, models that fully mimic human chronic wounds have not been developed. In this review, we assess various models currently being used to study the biology of impaired healing and chronic non-healing wounds. Among them, this paper also highlights one model which shows significant promise; this model uses aged and obese db/db-/- mice and the chronic wounds that develop show characteristics of human chronic wounds that include increased oxidative stress, chronic inflammation, damaged microvasculature, abnormal collagen matrix deposition, a lack of re-epithelialization, and the spontaneous development of multi-bacterial biofilm. We also discuss how important it is that we continue to develop chronic wound models that more closely mimic those of humans and that can be used to test potential treatments to heal chronic wounds.


Subject(s)
Anxiety , Wound Healing , Animals , Aged , Mice , Humans , Biofilms , Emotions , Models, Animal , Obesity
10.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612826

ABSTRACT

The "Repeated Bout Effect" (RBE) occurs when a skeletal muscle is preconditioned with a few lengthening contractions (LC) prior to exposing the muscle to a greater number of LC. The preconditioning (PC) results in significantly less damage and preservation of force. Since it takes only a few LC to increase muscle heat shock protein (HSP) content, it was of interest to examine the relationship between HSPs and the RBE. To do this, one tibialis anterior (TA) muscle from Sprague-Dawley rats (n = 5/group) was preconditioned with either 0, 5, or 15 lengthening contractions (LC) and exposed to a treatment of 60 LC 48 h later. Preconditioning TA muscles with 15 LC, but not 5 LC, significantly elevated muscle αB-crystallin (p < 0.05), HSP25 (p < 0.05), and HSP72 content (p < 0.001). These preconditioned TA muscles also showed a significantly (p < 0.05) reduced loss of active torque throughout the subsequent 60 LC. While there was a trend for all preconditioned muscles to maintain higher peak torque levels throughout the 60 LC, no significant differences were detected between the groups. Morphologically, preconditioned muscles appeared to show less discernible muscle fiber damage. In conclusion, an elevated skeletal muscle HSP content from preconditioning may contribute to the RBE.


Subject(s)
Heat-Shock Proteins , Muscle, Skeletal , Rats , Animals , Rats, Sprague-Dawley , Muscle Fibers, Skeletal , Conditioning, Psychological
11.
J Int Med Res ; 52(4): 3000605241245293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619175

ABSTRACT

In recent years, the incidence of autism spectrum disorder (ASD) has increased, but the etiology and pathogenesis remain unclear. In this narrative review, we review and systematically summarize the methods used to construct animal models to study ASD and the related behavioral studies based on recent literature. Utilization of various ASD animal models can complement research on the etiology, pathogenesis, and core behaviors of ASD, providing information and a foundation for further basic research and clinical treatment of ASD.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/genetics , Models, Animal
12.
One Health ; 18: 100723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623498

ABSTRACT

Blastocystis is a parasitic protist that can infect humans and various domestic and wild animals. However, there is limited research on the prevalence of this parasite among rodents, particularly those living in pig farm settings. Therefore, to investigate the occurrence, molecular characterization, and zoonotic potential of Blastocystis among rodents within pig farm environments, we conducted an investigation of 227 rodents and shrews from 34 pig farms located in Henan, Shaanxi, and Shanxi provinces of China using nested PCR of the SSU rRNA gene of Blastocystis. The potential transmission and public health implications were also assessed from a One Health perspective. Blastocystis was detected in 86 (37.9%) fecal samples. The highest infection rate was observed among Ruttus norvegicus (73.7%, 42/58), followed by Ruttus tanezumi (30.1%, 41/136), and Mus musculus (12.0%, 3/25). However, it was not detected among individuals with Apodemus agrarius (n = 1) and Crocidura shantungensis (n = 7). Five known zoonotic Blastocystis subtypes (ST1-ST5) were identified, with ST4 (51.2%, 44/86) and ST5 (40.7%, 35/86) being the predominant ones, followed by ST1 (3.5%, 3/86), ST3 (3.5%, 3/86), and ST2 (1.2%, 1/86). ST4 was prevalent among R. norvegicus (83.3%, 35/42), while ST5 dominated R. tanezumi (70.7%, 29/41). Furthermore, ST5 exhibited the widest distribution at pig farm level, accounting for 65.0% (13/20) of Blastocystis-positive pig farms. This investigation presents the first documented Blastocystis infection in R. tanezumi and M. musculus, highlighting the predominant presence of the zoonotic ST5 subtype in rodents for the first time. The results demonstrate that sympatric rodents can serve as natural reservoirs for Blastocystis and play a role in its transmission. These findings provide information on the dynamics of rodent transmission and emphasize the potential public health threat posed by zoonotic Blastocystis subtypes spillover from pig farms.

13.
Front Microbiol ; 15: 1368194, 2024.
Article in English | MEDLINE | ID: mdl-38638911

ABSTRACT

Introduction: Clostridioides difficile infection (CDI), as well as its etiology and pathogenesis, have been extensively investigated. However, the absence of suitable CDI animal models that reflect CDI symptoms and the associated gut microbiome changes in humans has limited research progress in this field. Thus, we aimed to investigate whether Mongolian gerbils, which present a range of human pathological conditions, can been used in studies on CDI. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Results: The results obtained showed that C. difficile colonized the gastrointestinal tracts of the three rodents, and after the C. difficile challenge, C57BL/6J mice did not manifest CDI symptoms and their intestines showed no significant pathological changes. However, the hamsters showed explosive intestinal bleeding and inflammation and the Mongolian gerbils presented diarrhea as well as increased infiltration of inflammatory cells, mucus secretion, and epithelial cell shedding in their intestinal tissue. Further, intestinal microbiome analysis revealed significant differences with respect to intestinal flora abundance and diversity. Specifically, after C. difficile challenge, the Firmicutes/Bacteroidetes ratio decreased for C57BL/6J mice, but increased significantly for Mongolian gerbils and hamsters. Furthermore, the abundance of Proteobacteria increased in all three models, especially in hamsters, while that of Verrucomicrobia only increased significantly in C57BL/6J mice and Mongolian gerbils. Our results also indicated that differences in the relative abundances of Lactobacillaceae and Akkermansia were primarily responsible for the observed differences in response to C. difficile challenge. Conclusion: Based on the observed responses to C. difficile challenge, we concluded for the first time that the Mongolian gerbil could be used as an animal model for CDI. Additionally, the taxa identified in this study may be used as biomarkers for further studies on CDI and to improve understanding regarding changes in gut microbiome in CDI-related diseases.

14.
Neuropharmacology ; 252: 109960, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631563

ABSTRACT

Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.

15.
Pest Manag Sci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563486

ABSTRACT

BACKGROUND: Rodent management with lethal methods (e.g., rodenticides) comes with downsides for rodent welfare, the environment and non-target species. To reduce chemical use and prevent rodent nuisance, pest controllers in the Netherlands must work according to the principles of integrated pest management (IPM). A condition for the success of IPM is that there is sufficient engagement of all parties involved, including clients of pest controllers. The aim of this study was to gain insight into the attitudes of clients regarding rodent control, IPM and the application of preventive measures. Insight into their attitudes may contribute to a better implementation of IPM and with that to a more sustainable rodent management based on more effective prevention. An online survey among 248 clients of Dutch pest controllers from both the agricultural and other sectors was carried out. RESULTS: Respondents from the agricultural sector had a relatively negative attitude towards IPM, the new IPM regulations in the Netherlands and had little confidence in prevention. In other sectors, respondents were more positive about IPM and had more confidence in prevention. The respondents from the latter subgroup had a similar attitude compared to Dutch pest controllers who participated in a previous survey. CONCLUSION: The findings of the study provide information for the further development and practical implementation of IPM and preventive measures and with that a more sustainable and animal friendly rodent management. They can also be helpful for a better communication and cooperation between pest controllers and their clients. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

16.
Front Neural Circuits ; 18: 1286111, 2024.
Article in English | MEDLINE | ID: mdl-38638163

ABSTRACT

Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.


Subject(s)
Brain , Rodentia , Animals , Humans , Aged , Prefrontal Cortex/physiology , Neurons/physiology , Cognition/physiology
17.
Ecol Evol ; 14(4): e11227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638368

ABSTRACT

Herbivorous rodents in boreal, alpine and arctic ecosystems are renowned for their multi-annual population cycles. Researchers have hypothesised that these cycles may result from herbivore-plant interactions in various ways. For instance, if the biomass of preferred food plants is reduced after a peak phase of a cycle, rodent diets can be expected to become dominated by less preferred food plants, leading the population to a crash. It could also be expected that the taxonomic diversity of rodent diets increases from the peak to the crash phase of a cycle. The present study is the first to use DNA metabarcoding to quantify the diets of two functionally important boreal rodent species (bank vole and tundra vole) to assess whether their diet changed systematically in the expected cyclic phase-dependent manner. We found the taxonomic diet spectrum broad in both vole species but with little interspecific overlap. There was no evidence of systematic shifts in diet diversity metrics between the phases of the population cycle in either species. While both species' diet composition changed moderately between cycle phases and seasons, these changes were small compared to other sources of diet variation-especially differences between individuals. Thus, the variation in diet that could be attributed to cyclic phases is marginal relative to the overall diet flexibility. Based on general consumer-resource theory, we suggest that the broad diets with little interspecific overlap render it unlikely that herbivore-plant interactions generate their synchronous population cycles. We propose that determining dietary niche width should be the first step in scientific inquiries about the role of herbivore-plant interactions in cyclic vole populations.

18.
Trends Neurosci ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658244

ABSTRACT

A recent study by Wang and colleagues disentangled a transcallosal inhibitory circuit in mouse anterior cingulate cortex (ACC), which modulates excitatory ipsilateral tonus and contralateral inhibition by exciting contralateral parvalbumin-positive (PV+) interneurons. The authors conclude that the identified circuit mediates interhemispheric balance for visuospatial attention and provides top-down modulation of visual cortices.

19.
Transpl Int ; 37: 12556, 2024.
Article in English | MEDLINE | ID: mdl-38650846

ABSTRACT

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Subject(s)
Disulfiram , Graft Rejection , Lung Transplantation , Macrophages , Rats, Inbred F344 , Rats, Inbred Lew , Animals , Lung Transplantation/adverse effects , Graft Rejection/prevention & control , Graft Rejection/immunology , Male , Disulfiram/pharmacology , Disulfiram/therapeutic use , Rats , Macrophages/drug effects , Macrophages/metabolism , Allografts , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Chemokine CCL2/metabolism , Lung/pathology , Lung/drug effects
20.
Curr Protoc ; 4(4): e1006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646951

ABSTRACT

Providing anesthesia and analgesia for mouse subjects is a common and critical practice in the laboratory setting. This practice is necessary for performing invasive procedures, achieving prolonged immobility for sensitive imaging modalities (magnetic resonance imaging, for instance), and providing intra- and post-procedural pain relief. In addition to facilitating the procedures performed by the investigator, the provision of anesthesia and analgesia is crucial for the preservation of animal welfare and for humane treatment of animals used in research. Furthermore, anesthesia and analgesia are important components of animal use protocols reviewed by Institutional Animal Care and Use Committees, requiring careful consideration and planning for the particular animal model. In this article, we provide technical guidance for the investigator, covering the provision of anesthesia by two routes (injectable and inhalant), guidelines for monitoring anesthesia, current techniques for recognition of pain, considerations for administering preventative analgesia, and considerations for post-operative care. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Injectable anesthesia Basic Protocol 2: Inhalant anesthesia Basic Protocol 3: Assessing pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...